• Skip to main content
  • Skip to secondary menu
  • Skip to footer

Technologies.org

Technology Trends: Follow the Money

  • Technology Events 2026-2027
  • Sponsored Post
  • Technology Markets
  • About
    • GDPR
  • Contact

Gas storage method could help next-generation clean energy vehicles

April 16, 2020 By admin Leave a Comment

Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores

A research team led by Northwestern University has designed and synthesized new materials with ultrahigh porosity and surface area for the storage of hydrogen and methane for fuel cell-powered vehicles. These gases are attractive clean energy alternatives to carbon dioxide-producing fossil fuels.

The designer materials, a type of a metal-organic framework (MOF), can store significantly more hydrogen and methane than conventional adsorbent materials at much safer pressures and at much lower costs.

“We’ve developed a better onboard storage method for hydrogen and methane gas for next-generation clean energy vehicles,” said Omar K. Farha, who led the research. “To do this, we used chemical principles to design porous materials with precise atomic arrangement, thereby achieving ultrahigh porosity.

Adsorbents are porous solids which bind liquid or gaseous molecules to their surface. Thanks to its nanoscopic pores, a one-gram sample of the Northwestern material (with a volume of six M&Ms) has a surface area that would cover 1.3 football fields.

The new materials also could be a breakthrough for the gas storage industry at large, Farha said, because many industries and applications require the use of compressed gases such as oxygen, hydrogen, methane and others.

Farha is an associate professor of chemistry in the Weinberg College of Arts and Sciences. He also is a member of Northwestern’s International Institute for Nanotechnology.

The study, combining experiment and molecular simulation, will be published on April 17 by the journal Science.

Farha is the lead and corresponding author. Zhijie Chen, a postdoctoral fellow in Farha’s group, is co-first author. Penghao Li, a postdoctoral fellow in the lab of Sir Fraser Stoddart, Board of Trustees Professor of Chemistry at Northwestern, also is a co-first author. Stoddart is an author on the paper.

The ultraporous MOFs, named NU-1501, are built from organic molecules and metal ions or clusters which self-assemble to form multidimensional, highly crystalline, porous frameworks. To picture the structure of a MOF, Farha said, envision a set of Tinkertoys in which the metal ions or clusters are the circular or square nodes and the organic molecules are the rods holding the nodes together.

Hydrogen- and methane-powered vehicles currently require high-pressure compression to operate. The pressure of a hydrogen tank is 300 times greater than the pressure in car tires. Because of hydrogen’s low density, it is expensive to accomplish this pressure, and it also can be unsafe because the gas is highly flammable.

Developing new adsorbent materials that can store hydrogen and methane gas onboard vehicles at much lower pressures can help scientists and engineers reach U.S. Department of Energy targets for developing the next generation of clean energy automobiles.

To meet these goals, both the size and weight of the onboard fuel tank need to be optimized. The highly porous materials in this study balance both the volumetric (size) and gravimetric (mass) deliverable capacities of hydrogen and methane, bringing researchers one step closer to attaining these targets.

“We can store tremendous amounts of hydrogen and methane within the pores of the MOFs and deliver them to the engine of the vehicle at lower pressures than needed for current fuel cell vehicles,” Farha said.

The Northwestern researchers conceived the idea of their MOFs and, in collaboration with computational modelers at the Colorado School of Mines, confirmed that this class of materials is very intriguing. Farha and his team then designed, synthesized and characterized the materials. They also collaborated with scientists at the National Institute for Standards and Technology (NIST) to conduct high-pressure gas sorption experiments.

The research was supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (award no. DE‐EE0008816).

The title of the paper is “Balancing volumetric and gravimetric uptake in highly porous materials for clean energy.”

(Source contact: Omar Farha at [email protected])
Northwestern University

Filed Under: Tech Tagged With: hydrogen

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Footer

Recent Posts

  • From Desk to Flight: High-Value 3D Printing Ideas for a Home Premise
  • Positron AI Raises $230M Series B, Redefines the Economics of AI Inference
  • What You Can Build in Loveable, and Why It Feels Different
  • Forrester Sees Global Tech Spending Hitting $5.6 Trillion in 2026 as AI Drives Growth Despite Tariffs
  • Chiplets Explained: How Modern Chips Are Really Built
  • January 31, 2026 — Tech & Markets Day Digest
  • DealHub Raises $100M to Redefine Enterprise Quote-to-Revenue
  • Preply Reaches $1.2B Valuation After $150M Series D to Scale Human-Led, AI-Enhanced Language Learning
  • Datarails Raises $70M Series C to Turn the CFO’s Office into an AI-Native Nerve Center
  • Emergent Raises $70M Series B as AI Turns Software Creation Into an Entrepreneurial Commodity

Media Partners

  • Market Analysis
  • Cybersecurity Market
Accrual Launches With $75M to Push AI-Native Automation Into Core Accounting Workflows
Europe’s Digital Sovereignty Moment, or How Regulation Became a Competitive Handicap
Palantir Q4 2025: From Earnings Beat to Model Re-Rating
Baseten Raises $300M to Dominate the Inference Layer of AI, Valued at $5B
Nvidia’s China Problem Is Self-Inflicted, and Washington Should Stop Pretending Otherwise
USPS and the Theater of Control: How Government Freezes Failure in Place
Skild AI Funding Round Signals a Shift Toward Platform Economics in Robotics
Saks Sucks: Luxury Retail’s Debt-Fueled Mirage Collapses
Alpaca’s $1.15B Valuation Signals a Maturity Moment for Global Brokerage Infrastructure
The Immersive Experience in the Museum World
CyberCube Appoints Chris Methven as CEO, Signaling Next Phase of Growth
Modveon Raises $10M to Build a Verified Operating System for Governments and Citizens
Modirum Platforms Joins Digital Defence Ecosystem Finland to Expand Europe’s Secure Digital Defence Capabilities
Salt Typhoon Reaches Scandinavia: When Telecom Espionage Goes Public in Norway
SentinelOne Expands AI Security to the First Mile, Redefining How Enterprises Protect AI Systems
NETSCOUT SYSTEMS Q3 FY2026: Quiet Acceleration, Better Mix, and a Cautious Turn Toward Growth
India’s Cyber Delegation Arrives in Tel Aviv for CyberTech 2026
Andersen Consulting Expands Cybersecurity and Legal Tech Capabilities in Strategic HaystackID Partnership
Lionsgate Network to Present AI-Powered Crypto Fraud Solutions at CyberTech Tel Aviv 2026
Cybertech 2026, January 26–28, Tel Aviv Expo

Media Partners

  • Market Research Media
  • Technology Conferences
When the Market Wants a Story, Not Numbers: Rethinking AMD’s Q4 Selloff
BBC and the Gaza War: How Disproportionate Attention Reshapes Reality
Parallel Museums: Why the Future of Art Might Be Copies, Not Originals
ClickHouse Series D, The $400M Bet That Data Infrastructure, Not Models, Will Decide the AI Era
AI Productivity Paradox: When Speed Eats Its Own Gain
Voice AI as Infrastructure: How Deepgram Signals a New Media Market Segment
Spangle AI and the Agentic Commerce Stack: When Discovery and Conversion Converge Into One Layer
PlayStation and the Quiet Power Center of a $200 Billion Gaming Industry
Adobe FY2025: AI Pulls the Levers, Cash Flow Leads the Story
Canva’s 2026 Creative Shift and the Rise of Imperfect-by-Design
Chiplet Summit 2026, February 17–19, Santa Clara Convention Center, Santa Clara, California
MIT Sloan CIO Symposium Innovation Showcase 2026, May 19, 2026, Cambridge, Massachusetts
Humanoid Robot Forum 2026, June 22–25, Chicago
Supercomputing Asia 2026, January 26–29, Osaka International Convention Center, Japan
Chiplet Summit 2026, February 17–19, Santa Clara Convention Center, Santa Clara, California
HumanX, 22–24 September 2026, Amsterdam
CES 2026, January 7–10, Las Vegas
Humanoids Summit Tokyo 2026, May 28–29, 2026, Takanawa Convention Center
Japan Pavilion at CES 2026, January 6–9, Las Vegas
KubeCon + CloudNativeCon Europe 2026, 23–26 March, Amsterdam

Copyright © 2022 Technologies.org

Media Partners: Market Analysis & Market Research and Exclusive Domains, Photography