• Skip to main content
  • Skip to secondary menu
  • Skip to footer

Technologies.org

Technology Trends: Follow the Money

  • Technology Events 2026-2027
  • Sponsored Post
  • Technology Markets
  • About
    • GDPR
  • Contact

Bloom Energy Unveils Electrolyzer to Supercharge the Path to Low-Cost, Net-Zero Hydrogen

July 14, 2021 By admin Leave a Comment

Expected to produce the lowest cost clean hydrogen through electrolysis

Utilizes solid oxide technology and delivers superior efficiency advantage operating at high temperatures

Unlocks a net-zero emissions future for hard-to-decarbonize heavy industries

Accepting orders with commercial shipment expected fall 2022

SAN JOSE, Calif. – Bloom Energy (NYSE: BE) today unveiled the Bloom Electrolyzer; the most energy-efficient electrolyzer to produce clean hydrogen to date and 15 to 45 percent more efficient than any other product on the market today.

The Bloom Electrolyzer relies on the same, commercially proven and proprietary solid oxide technology platform used by Bloom Energy Servers to provide on-site electricity at high fuel efficiency. Highly flexible, it offers unique advantages for deployment across a broad variety of hydrogen applications, using multiple energy sources including intermittent renewable energy and excess heat.

Superior Value at High Temperatures

Low-cost electrolysis has been difficult to achieve due to electricity costs, which can account for nearly 80 percent of the cost of hydrogen production through electrolysis. An opportunity has emerged, as renewable energy costs have declined precipitously over the last decade. Any reduction in electricity requirements makes hydrogen production more economical and scalable.

Because it operates at high temperatures, the Bloom Electrolyzer requires less energy to break up water molecules and produce hydrogen. As a result, Bloom Energy’s electrolyzer consumes 15 percent less electricity than other electrolyzer technologies to make hydrogen when electricity is the sole input source.

Unlike low-temperature PEM and alkaline electrolyzers that predominantly require electricity to make hydrogen, the Bloom Electrolyzer can leverage both electricity and heat to produce hydrogen. Bloom Energy’s high-temperature electrolyzer technology has the potential to use up to 45 percent less electricity when integrated with external heat sources than low-temperature PEM and alkaline electrolyzers.

“The launch of the Bloom Electrolyzer is a big leap forward in our mission to enable and empower the global hydrogen economy and a decarbonized society,” said KR Sridhar, founder, chairman, and CEO, Bloom Energy. “Hydrogen enables us to leverage abundant and inexpensive renewable energy to provide zero-carbon power, reliably—instead of intermittently. Given its efficiency and input options to make hydrogen, Bloom Energy’s electrolyzer is expected to produce hydrogen at a lower price than any alternative on the market today.”

Decarbonizing Heavy Industries

High-temperature electrolysis unlocks substantial value with heat-intensive processing applications in hard-to-decarbonize heavy industries, like steel, chemical, cement, and glass manufacturing. By utilizing excess heat from these processes, hydrogen can be produced at a higher electrical efficiency. Further, the hydrogen required to power high-temperature furnaces at these factories can be produced on-site using Bloom Energy electrolyzers, eliminating transportation and distribution costs.

Optimizing Intermittent Renewables

When the Bloom Electrolyzer is paired with intermittent renewable resources, such as wind and solar, the resulting green hydrogen provides an important storage mechanism. Hydrogen can be stored for long periods of time and transported over long distances. Alternatively, Bloom Energy’s fuel cells can convert this hydrogen to electricity, thereby providing continuous, reliable power.

Gigawatt Production and Scale

Bloom Energy began manufacturing in the U.S. in 2001 and now supports more than 1,500 American clean energy jobs. Bloom Energy’s Sunnyvale, California and Newark, Delaware manufacturing facilities are capable of producing 500 megawatts of electrolyzers today and a gigawatt within a year.

Since the Bloom Electrolyzer utilizes the same solid oxide platform as the company’s core fuel cell product, utilizing many of the same components, Bloom Energy can scale and leverage supply chain synergies.

Enabling and Empowering the Global Hydrogen Economy

Bloom Energy’s technology dates to the 1980s, when the co-founders first developed electrolyzers to support the military and later NASA’s Mars exploration programs. In the early 2000s, 19 patents were awarded to Bloom Energy for its electrolyzer technology. With reduced renewable energy costs and the global movement to decarbonize, Bloom Energy believes this is the right moment to commercialize its hydrogen technology. Collaborating with industry-leading organizations, Bloom Energy celebrated several milestones over the past year:

First announced electrolyzer pilot: In November 2020, Bloom Energy announced it will supply its electrolyzers to an industrial complex in Changwon, Korea in collaboration with its Korean partner, SK EcoPlant. Supporting the Changwon RE100 initiative to create renewable ecosystems, the new project paves the way for South Korea to reach carbon neutrality by 2050. The units will ship to Changwon in mid-2022.

Harnessing excess nuclear energy: In May 2021, Bloom Energy announced its collaboration with the U.S. Department of Energy’s Idaho National Laboratory (INL) to test the use of nuclear energy to create clean hydrogen through the Bloom Electrolyzer. Rather than ramping down power generation when an electric grid has surplus energy, the Bloom Electrolyzer can use the excess electricity and steam generated by nuclear plants to produce low-cost, zero-carbon hydrogen, providing clean energy for use when it’s needed while simultaneously offering nuclear power plants a source of revenue for their excess power. The units are undergoing testing in Bloom Energy’s laboratories and are expected to ship to INL in Q3.

Integrating hydrogen solutions: In May 2021, Bloom Energy announced a collaboration with energy technology company Baker Hughes to explore commercialization and deployment collaborations in many areas, including integrated hydrogen solutions, to advance the energy transition. The companies will look to pair the Bloom Electrolyzer with Baker Hughes’ compression technology for efficient production, compression, transport, and storage of hydrogen. They will also assess excess heat utilization for steam generation to further increase efficiency and cost effectiveness of hydrogen production and target applications like blending hydrogen into natural gas networks alongside on-site hydrogen production for industrial use.

Orders are being accepted for the Bloom Electrolyzer, with commercial shipments expected to begin in fall 2022. For more information about the Bloom Electrolyzer and the company’s commitment to a zero-carbon future, visit: www.bloomenergy.com/bloomelectrolyzer.

About Bloom Energy

Bloom Energy’s mission is to make clean, reliable energy affordable for everyone in the world. Bloom Energy’s product, the Bloom Energy Server, delivers highly reliable and resilient, always-on electric power that is clean, cost-effective, and ideal for microgrid applications. Bloom Energy’s customers include many Fortune 100 companies and leaders in manufacturing, data centers, healthcare, retail, higher education, utilities, and other industries. For more information, visit www.bloomenergy.com.

Filed Under: Tech Tagged With: hydrogen

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Footer

Recent Posts

  • The unveiling of Intel® Core™ Ultra Series 3 processors marks the company’s first AI PC platform built on Intel’s own 18A process technology
  • Qi2 Wireless Charging Momentum, CES 2026, Las Vegas
  • Consumer Tech & Durable Goods Outlook: Flat Topline, Fragmented Opportunity
  • Qualcomm Acquires Ventana Micro Systems: Why It Matters, What It Changes, and Why Arm Should Pay Attention
  • Scylos Secures $3M Seed Round to Rethink Endpoint Security from the Ground Up
  • Databricks has just closed a massive new funding round that pushes its valuation to roughly $134 billion
  • Nu Quantum’s $60M Leap Toward the Entanglement Era
  • Haven Energy Raises $40M to Scale Virtual Power Plants Across the U.S. Grid
  • Supermicro Expands NVIDIA Blackwell Portfolio with Liquid-Cooled HGX B300 Systems
  • UMC and imec Push Silicon Photonics Into Its Next Act

Media Partners

  • Market Analysis
  • Cybersecurity Market
Global Robotics Trends 2026: Where Machines Start Thinking for Themselves
Orano’s U.S. Enrichment Project and the Rewiring of American Nuclear Strategy
U.S. Tech Employment Slows as Hiring Cools and AI Reshapes Demand
Semiconductor Equipment Boom, 2025–2027, Global Manufacturing Outlook
ServiceNow Sharpens Its Competitive Edge by Making Moveworks the Front Line of the Enterprise
NVIDIA Acquires SchedMD: How Owning the Brain of the Cluster Sharpens NVIDIA’s Competitive Edge
Cloudflare Year in Review 2025: How the Internet Quietly Rewired Itself
The $250 Billion Stablecoin Market: Who Uses It, Why It Exists, and Where the Growth Actually Comes From
Will It Save Intel? The $1.6B SambaNova Question
Crisp’s $26M Series B1 Shows Why Vertical AI Is Pulling Ahead
CrowdStrike–SGNL Deal Signals Identity’s Promotion to the Center of Cyber Defense
CrowdStrike Backs the Next Wave of AI-Native Cybersecurity Startups
Afero and Texas Instruments Redefine Cybersecurity at the IoT Edge
Stellar Cyber Climbs to #2 in MSSP Alert 2025 Rankings, Signaling Deepening Trust Across the Global SecOps Ecosystem
Ascend 2026, May–October 2026, Global Event Series
Black Hat Europe 2025, December 9–12, London, United Kingdom
C1 and Texas Southern University Launch Cybersecurity Lab, Houston, Texas
GDIT Wins $285M Cybersecurity Contract to Fortify Virginia’s Digital Backbone
Why ServiceNow Wants Armis: Security as the Missing Layer in the Entrprise Workflow Empire
Opal Security Names Howard Ting CEO as AI Access Governance Enters Its Defining Moment

Media Partners

  • Market Research Media
  • Technology Conferences
Spangle AI and the Agentic Commerce Stack: When Discovery and Conversion Converge Into One Layer
PlayStation and the Quiet Power Center of a $200 Billion Gaming Industry
Adobe FY2025: AI Pulls the Levers, Cash Flow Leads the Story
Canva’s 2026 Creative Shift and the Rise of Imperfect-by-Design
fal Raises $140M Series D: Scaling the Core Infrastructure for Real-Time Generative Media
Gaming’s Next Expansion Wave, 2026–2030
Morphography — A Visual Language for the Next Era of AI
Netflix’s $83B Grab for Warner Bros. & HBO: A Tectonic Shift in Global Media
Clipbook Raises $3.3M Seed Round — And the PR World Just Got a Warning Shot
BrandsToShop.com — the right domain to have for Cyber Monday, Black Friday and every loud shopping season ahead
CES 2026, January 7–10, Las Vegas
Humanoids Summit Tokyo 2026, May 28–29, 2026, Takanawa Convention Center
Japan Pavilion at CES 2026, January 6–9, Las Vegas
KubeCon + CloudNativeCon Europe 2026, 23–26 March, Amsterdam
4YFN26, 2–5 March 2026, Fira Gran Via — Barcelona
DLD Munich 26, January 15–17, Munich, Germany
SPIE Photonics West 2026, January 17–22, San Francisco
Gurobi Decision Intelligence Summit, October 28–29, 2025, Vienna
MIT Sloan CFO Summit, November 20, 2025, Cambridge
Roblox Expands the Future of Creation at RDC 2025

Copyright © 2022 Technologies.org

Media Partners: Market Analysis & Market Research and Exclusive Domains