• Skip to main content
  • Skip to secondary menu
  • Skip to footer

Technologies.org

Technology Trends: Follow the Money

  • Technology Events 2025-2026
  • Sponsored Post
    • Make a Contribution
  • Technology Jobs
  • Technology Markets
  • About
    • GDPR
  • Contact

NASA’s Voyager 2 Probe Enters Interstellar Space

December 10, 2018 By admin Leave a Comment

For the second time in history, a human-made object has reached the space between the stars. NASA’s Voyager 2 probe now has exited the heliosphere – the protective bubble of particles and magnetic fields created by the Sun.

Members of NASA’s Voyager team will discuss the findings at a news conference at 11 a.m. EST (8 a.m. PST) today at the meeting of the American Geophysical Union (AGU) in Washington. The news conference will stream live on the agency’s website.

Comparing data from different instruments aboard the trailblazing spacecraft, mission scientists determined the probe crossed the outer edge of the heliosphere on Nov. 5. This boundary, called the heliopause, is where the tenuous, hot solar wind meets the cold, dense interstellar medium. Its twin, Voyager 1, crossed this boundary in 2012, but Voyager 2 carries a working instrument that will provide first-of-its-kind observations of the nature of this gateway into interstellar space.

Voyager 2 now is slightly more than 11 billion miles (18 billion kilometers) from Earth. Mission operators still can communicate with Voyager 2 as it enters this new phase of its journey, but information – moving at the speed of light – takes about 16.5 hours to travel from the spacecraft to Earth. By comparison, light traveling from the Sun takes about eight minutes to reach Earth.

The most compelling evidence of Voyager 2’s exit from the heliosphere came from its onboard Plasma Science Experiment (PLS), an instrument that stopped working on Voyager 1 in 1980, long before that probe crossed the heliopause. Until recently, the space surrounding Voyager 2 was filled predominantly with plasma flowing out from our Sun. This outflow, called the solar wind, creates a bubble – the heliosphere – that envelopes the planets in our solar system. The PLS uses the electrical current of the plasma to detect the speed, density, temperature, pressure and flux of the solar wind. The PLS aboard Voyager 2 observed a steep decline in the speed of the solar wind particles on Nov. 5. Since that date, the plasma instrument has observed no solar wind flow in the environment around Voyager 2, which makes mission scientists confident the probe has left the heliosphere.

“Working on Voyager makes me feel like an explorer, because everything we’re seeing is new,” said John Richardson, principal investigator for the PLS instrument and a principal research scientist at the Massachusetts Institute of Technology in Cambridge. “Even though Voyager 1 crossed the heliopause in 2012, it did so at a different place and a different time, and without the PLS data. So we’re still seeing things that no one has seen before.”

In addition to the plasma data, Voyager’s science team members have seen evidence from three other onboard instruments – the cosmic ray subsystem, the low energy charged particle instrument and the magnetometer – that is consistent with the conclusion that Voyager 2 has crossed the heliopause. Voyager’s team members are eager to continue to study the data from these other onboard instruments to get a clearer picture of the environment through which Voyager 2 is traveling.

“There is still a lot to learn about the region of interstellar space immediately beyond the heliopause,” said Ed Stone, Voyager project scientist based at Caltech in Pasadena, California.

Together, the two Voyagers provide a detailed glimpse of how our heliosphere interacts with the constant interstellar wind flowing from beyond. Their observations complement data from NASA’s Interstellar Boundary Explorer (IBEX), a mission that is remotely sensing that boundary. NASA also is preparing an additional mission – the upcoming Interstellar Mapping and Acceleration Probe (IMAP), due to launch in 2024 – to capitalize on the Voyagers’ observations.

“Voyager has a very special place for us in our heliophysics fleet,” said Nicola Fox, director of the Heliophysics Division at NASA Headquarters. “Our studies start at the Sun and extend out to everything the solar wind touches. To have the Voyagers sending back information about the edge of the Sun’s influence gives us an unprecedented glimpse of truly uncharted territory.”

While the probes have left the heliosphere, Voyager 1 and Voyager 2 have not yet left the solar system, and won’t be leaving anytime soon. The boundary of the solar system is considered to be beyond the outer edge of the Oort Cloud, a collection of small objects that are still under the influence of the Sun’s gravity. The width of the Oort Cloud is not known precisely, but it is estimated to begin at about 1,000 astronomical units (AU) from the Sun and to extend to about 100,000 AU. One AU is the distance from the Sun to Earth. It will take about 300 years for Voyager 2 to reach the inner edge of the Oort Cloud and possibly 30,000 years to fly beyond it.

The Voyager probes are powered using heat from the decay of radioactive material, contained in a device called a radioisotope thermal generator (RTG). The power output of the RTGs diminishes by about four watts per year, which means that various parts of the Voyagers, including the cameras on both spacecraft, have been turned off over time to manage power.

“I think we’re all happy and relieved that the Voyager probes have both operated long enough to make it past this milestone,” said Suzanne Dodd, Voyager project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “This is what we’ve all been waiting for. Now we’re looking forward to what we’ll be able to learn from having both probes outside the heliopause.”

Voyager 2 launched in 1977, 16 days before Voyager 1, and both have traveled well beyond their original destinations. The spacecraft were built to last five years and conduct close-up studies of Jupiter and Saturn. However, as the mission continued, additional flybys of the two outermost giant planets, Uranus and Neptune, proved possible. As the spacecraft flew across the solar system, remote-control reprogramming was used to endow the Voyagers with greater capabilities than they possessed when they left Earth. Their two-planet mission became a four-planet mission. Their five-year lifespans have stretched to 41 years, making Voyager 2 NASA’s longest running mission.

The Voyager story has impacted not only generations of current and future scientists and engineers, but also Earth’s culture, including film, art and music. Each spacecraft carries a Golden Record of Earth sounds, pictures and messages. Since the spacecraft could last billions of years, these circular time capsules could one day be the only traces of human civilization.

Voyager’s mission controllers communicate with the probes using NASA’s Deep Space Network (DSN), a global system for communicating with interplanetary spacecraft. The DSN consists of three clusters of antennas in Goldstone, California; Madrid, Spain; and Canberra, Australia.

The Voyager Interstellar Mission is a part of NASA’s Heliophysics System Observatory, sponsored by the Heliophysics Division of NASA’s Science Mission Directorate in Washington. JPL built and operates the twin Voyager spacecraft. NASA’s DSN, managed by JPL, is an international network of antennas that supports interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe. The network also supports selected Earth-orbiting missions. The Commonwealth Scientific and Industrial Research Organisation, Australia’s national science agency, operates both the Canberra Deep Space Communication Complex, part of the DSN, and the Parkes Observatory, which NASA has been using to downlink data from Voyager 2 since Nov. 8.

For more information about the Voyager mission, visit:

https://www.nasa.gov/voyager

More information about NASA’s Heliophysics missions is available online at:

https://www.nasa.gov/sunearth

SOURCE NASA

Related Links
http://www.nasa.gov

Filed Under: Tech

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Footer

Recent Posts

  • Adobe Introduces LLM Optimizer to Help Brands Navigate the Generative AI Shift
  • Why Visa and Mastercard Stocks Slipped After the Stablecoin News
  • iOS 26: The Most Personal, Intelligent, and Private iPhone Experience Yet
  • Postman Unveils Agentic AI Tooling to Operationalize API-Driven Intelligence
  • AM Batteries Opens New Facility in Billerica to Advance U.S. Battery Supply Chain
  • Meibel Secures $7 Million to Revolutionize AI Runtime Management
  • Tailor Raises $14 Million to Redefine ERP for Modern Businesses with Composable Architecture
  • Intel Unveils New GPUs and AI Accelerators at Computex 2025
  • Unlocking Critical Minerals: USGS Invites States to Turn Mine Waste into Treasure
  • Blacksmith Reimagines Continuous Integration with AI-Optimized Infrastructure

Media Partners

  • Market Analysis
  • Cybersecurity Market
China’s Strategic Shift to RISC-V: Market Implications and Growth Prospects
Understanding Transfer Pricing: A Key Component of Multinational Business Operations
A Comprehensive Tour of Project Management Tools and Integration Platforms
Implementing Odoo ERP in a Small Manufacturing Enterprise: Costs and Considerations
Economic Optimism Meets Uncertainty: Blue Chip Indicators Highlight Post-Election Fiscal Concerns and AI’s Looming Impact
The Future of Connectivity: Insights from Ericsson’s November 2024 Mobility Report
Platinum Market Faces Sustained Deficit Amidst Strong Demand and Constrained Supply
Breaking Beijing’s Grip: U.S. and Australia Unite Against China’s Rare Earth Monopoly
Global AI-Powered Accounting and Audit Services Market Analysis 2023-2030: Growth, Trends, and Forecast
The Re-Emergence of PHP
Passwork Achieves ISO/IEC 27001:2022 Certification, Reinforcing Commitment to Enterprise Security
Halo Security Honored with 2025 MSP Today Product of the Year Award
Cloudflare Log Explorer: A Unified Security and Performance Lens Within the Dashboard
The Rising Tide: AI and Cybersecurity Challenges Loom Large for CISOs
Arsen Launches AI-Powered Vishing Simulation to Help Organizations Combat Voice Phishing at Scale
Cyera Raises $540M to Cement Its Role as AI’s Data Security Backbone
ZeroRISC Secures $10M to Build Transparent, Secure Supply Chains
Cisco Fuses AI Security Into the Network Fabric: A Unified Vision for the Agentic Era
Guardz Raises $56M Series B to Scale AI-Native Cybersecurity Platform for MSPs and SMBs
Horizon3.ai’s $100M Bet on Autonomous Security

Media Partners

  • Market Research Media
  • Technology Conferences
The Rise of Headless Content Frameworks in Distributed Media Projects
Developing Web Projects: From Concept to Launch
The Rise of APS-C Cameras: A Professional Renaissance in Photography
Market Brief: Disruption in Spanish Orange Supply Chain and Strategic Response by UK Retailers
Global AI-Powered Movie Scenario Market Analysis 2023-2030: Growth, Trends, and Forecast
Market Research Report: US Government Cybersecurity Market in 2024
Market Research Report: Global Advertising Revenue Projections and Trends in the Entertainment & Media Industry
Social Media: The Rise of Formulaic Content
Netflix’s Creative Decline: The Rise of Formulaic Content
The Transformation of Media: Navigating the Waning Allure of Social Platforms
Apple Announces WWDC25, June 9 to 13, 2025
Adobe Summit 2025, March 17-20, Las Vegas
Embedded World 2025, from 11 to 13 March 2025 in Nuremberg
SATELLITE 2025: Uniting the Global Satellite and Space Communities
The milestone 10th edition of Chatbot Summit on March 31 – April 1, 2025, The Ritz-Carlton, Berlin
Snowflake Summit 2025, scheduled for June 2-5, 2025, in San Francisco
The NVIDIA GPU Technology Conference (GTC) 2025 is set to take place from March 17 to 21 at the San Jose McEnery Convention Center in San Jose, California
The Taipei Nangang Exhibition Center is set to host COMPUTEX 2025 from May 20 to May 23
The Mobile World Congress (MWC 2025) will kick off from March 3 to 6 in Barcelona, Spain
IOT Solutions World Congress 2025: Forging the Future of Industrial Innovation

Copyright © 2022 Technologies.org

Media Partners: Market Analysis & Market Research and Exclusive Domains